

Subscriber access provided by ISTANBUL TEKNIK UNIV

New Tetrasaccharide Flavonol **Glycoside from Epimedium acuminatum**

Bi-huang Hu, Li-dong Zhou, and Yong-long Liu

J. Nat. Prod., 1992, 55 (5), 672-675• DOI: 10.1021/np50083a019 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50083a019 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

NEW TETRASACCHARIDE FLAVONOL GLYCOSIDE FROM EPIMEDIUM ACUMINATUM

BI-HUANG HU,* LI-DONG ZHOU, and YONG-LONG LIU

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, People's Republic of China

ABSTRACT.—A new tetrasaccharide flavonol glycoside was isolated from the aerial parts of *Epimedium acuminatum*, along with three known flavonoids. The structure of the new compound, named acuminatoside [1], was established to be anhydroicaritin-3-0- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranoside-7-0- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside by means of spectroscopic techniques (uv, eims, fdms, fabms, ¹H nmr, ¹H-¹H COSY, 2D-J, ¹³C nmr, APT, and ¹H-¹³C HETCOR) and chemical methods (acid hydrolysis, enzymatic hydrolysis, and tlc-densitometry). The known compounds were identified as icariin, epimedoside A, and kaempferitrin.

Some plants of the genus *Epimedium* (Berberidaceae) have been used as a tonic in traditional Chinese medicine. In a previous study, we investigated the constituents of the $CHCl_3$ -soluble and EtOAc-soluble portions of the 95% EtOH extract from the aerial part of *Epimedium acuminatum* Franch (1). We report here the structure elucidation of a new flavonoid, acuminatoside [1], and the identification of three known flavonoids, isolated from the *n*-BuOH-soluble portion of the above extract.

RESULTS AND DISCUSSION

Acuminatoside [1], a yellow amor-

phous powder, was positive to Mg-HCl and Molish tests. The uv spectrum showed absorption bands at 266, 311, and 338 sh nm, and bathochromic shifts were observed after adding certain reagents (NaOMe, AlCl₃/HCl, and NaOAc), which indicated that 1 was a flavonoid with the presence of a 5-hydroxyl group and the absence of free hydroxyl groups at C-3, C-4', and C-7. The eims gave the molecular ion peak of the aglycone of 1 at m/z 368. The fragments (m/z 353, 313, 165, and 135) formed after retro-Diels-Alder cleavage suggested that 1 had a prenyl group in ring A and an MeO group in ring B.

Fabms data showed that 1 contained four sugar units. In the ¹H-nmr spectrum (300 MHz, DMSO- d_6), four anomeric protons were observed and assigned to those of rhamnose δ 5.37 (br, s), glucose 5.00 (d, J = 8.0 Hz), rhamnose 4.86 (br, s), and glucose 4.28 (d, J = 8.0 Hz). The presence of two twoproton doublets at δ 7.87 (J = 7.5 Hz) and 7.11 (J = 7.5 Hz) and a one-proton singlet at 6.61, assignable to the proton at C-6 because of a glucosylation at C-7 (2), suggested that the aglycone was based on kaempferol with a substituent carbon linked at C-8. The characteristic signals based on a prenyl group as the substituent were observed at δ 1.66 (3H, s), 1.58 (3H, s), 3.34 (2H, m), and 5.14 (1H, br, t, J = 5.0 Hz). The location of the prenyl group at the C-8 position was supported by the ¹³C-nmr spectrum of 1 because of the chemical shift value of the carbon atom at the C-6 position (δ 98.3) (3). In addition to those, the signal of an MeO group was observed at δ 3.83 (3H, s). Combined with the eims fragments, the aglycone was concluded to be anhydroicaritin.

Acid hydrolysis of 1 afforded D-glucose, L-rhamnose, and the aglycone. The molar ratio of aglycone to glucose to rhamnose from 1 was 1:2:2, which was determined by tlc-densitometry after acid hydrolysis. Partial acid hydrolysis of 1 produced a compound which was identified as anhydroicaritin-7-0- β -Dglucopyranoside by spectroscopic analysis.

Enzymatic hydrolysis of **1** gave a product. The uv spectrum of this product and the shift values after adding some reagents showed that the hydroxyl group at C-7 was free. The fabms revealed that the product contained two rhamnose units. Combined with the uv and ¹H-nmr results, the disaccharide moiety was attached at C-3. The interlinkage of the biose was determined to be α -L-rhamnopyranosyl-(1 \mapsto 2)- α -Lrhamnopyranoside by a key ¹³C-nmr signal (75.5 ppm) and was confirmed by the ¹H-¹³C HETCOR spectrum which showed that the proton (δ 4.14) at the C-2 of the rhamnose attached to the aglycone had a cross peak with the C-2 (δ 75.5), indicating that the carbon signal was shifted downfield δ 5.4 by the glycosylation of the terminal rhamnose. The enzymatic hydrolysis product was, therefore, identified as anhydroicaritin 3-0- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -Lrhamnopyranoside.

So far, the above data revealed that 1 contained the structure of anhydroicaritin-3-0- α -L-rhamnopyranosyl-(1 \mapsto 2)- α -L-rhamnopyranoside-7-0-β-D-glucopyranoside. Further, the ¹³C-nmr spectrum of 1 showed four anomeric carbon signals of the sugar moieties at δ 101.8, 100.8, 100.7, and 97.0. The location of the other glucose unit of 1 was determined to be attached to the glucose unit at the C-7 position by its ¹³C-nmr and ¹H-¹³C HETCOR spectra. The chemical shift value at the C-2 (δ 82.0) of the glucose unit attached to aglycone was shifted downfield (δ 8.5), but those at the C-1 (\$ 97.0) and C-3 (\$ 76.6) showed upfield shifts (ca. δ 2.4 and 0.2, respectively), demonstrating that the terminal glucose was linked to the glucose unit by a $(1 \rightarrow 2)$ linkage (4).

From these data, the structure of **1** was concluded to be anhydroicaritin-3- $O-\alpha$ -L-rhamnopyranosyl- $(1\mapsto 2)-\alpha$ -Lrhamnopyranoside-7- $O-\beta$ -D-glucopyranosyl- $(1\mapsto 2)-\beta$ -D-glucopyranoside, and was named acuminatoside. In addition, the three known compounds were identified as icariin, epimedoside A, and kaempferitrin on the basis of spectroscopic analysis and comparison with authentic samples.

EXPERIMENTAL

GENERAL EXPERIMENTAL METHODS.—The ¹H-nmr and ¹³C-nmr spectra measured with TMS as internal reference were run on FX-100, XL-VXR 300, and JNM-GX 400 nmr spectrometers, respectively. Eims and fdms were measured on an MAT 711 mass spectrometer. Fabms were recorded on a KYKY ZhP-5 mass spectrometer. Uv spectra were measured on a Philips PYS Unicam PU 8800. Sephadex LH-20 (Pharmacia), Polyclar A T (Serva), and cellulase (Sigma) were used. Polyamide films were produced by the Huang-Yan Chemical Factory, Zhejiang Province, China. Si gel was the product of the Qingdao Marine Chemical Factory, Shandong Province, China.

PLANT MATERIAL.—The aerial parts of *E. acuminatum* were collected on the E-mei Mountain, Sichuan Province, China in July, 1985. The material was identified by Prof. Wen-yan Lian, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences. A voucher specimen has been deposited in the herbarium of the Institute. EXTRACTION AND ISOLATION.—The dried aerial parts (2 kg) were extracted $4 \times \text{with } 95\%$ EtOH (24 liters) under reflux for 2 h. The combined extracts were concentrated at reduced pressure. The residue (292 g) was suspended in H₂O and extracted successively with CHCl₃, EtOAc, and *n*-BuOH. The *n*-BuOH portion (49 g) was chromatographed on a Si gel Column (eluent: CHCl₃-MeOH gradient) and separated into seven parts. Compound **1** (1.5 g) from part five, icariin (2.0 g) from part three, and epimedoside A (100 mg) and kaempferitrin (50 mg) from part four were obtained by the combination of Polyclar AT CC and purification with a Sephadex LH-20 column.

Carbon	Compound				
	1		Enzymatic hydrolysis product of 1		
C-2	15	7.3	15	6.7	
C-3	134.6		134.4		
C-4	178.2		177.9		
C-5	160.6		161.9		
C-6	98 3		98.4		
C-7	161.5		161 3		
	101.9		10	106.0	
	153.0		153.8		
C-10	105 7		104.2		
C-10	21.7		21.2		
$C_{11} = 0$	122.2		122.3		
C-12	122.2		131.3		
C-19	25.7		25.4		
C 15	2J./ 19 1		17 8		
C^{-1}	10.1		17.0		
C^{-1}	122.2		12	122.5	
$C_{2'} = 0 \dots \dots$	130.7		116.1		
$C_{-3}, -3 \dots \dots$	114.2		114.1		
0.4 \cdots 0.4	1)9.1		1)0.9		
	33 .7		,,,,,		
Kna C 1	100.7	101.9	100 7	101.6	
$\begin{array}{c} \mathbf{C}^{-1} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \mathbf{C}^{-2} & \cdot & \cdot & \cdot \\ \end{array}$	100.7	70.2	75 5	70.1	
$C^2 \cdots \cdots$	75.7	70.5	70.5	70.1	
$\begin{array}{c} c - j & \ldots & \ldots & \ldots & \ldots \\ c & \end{array}$	70.4	70.0	70.5	70.7	
$C^{-4} \cdots \cdots$	/2.1	/1.)	72.0	/1.4 20 0	
$(-)$ \cdots \cdots	09.8	17.0	/0.5	17.5	
	17.9	17.0	17.0	17.5	
Giù	07.0	100.0			
	97.0	100.8			
C-2	82.U 76 7	13.2			
	/0./	/0.7 60.4			
C-4	/U.U 2 2 2	09.4 77 2			
	//.5	//.5			
L-O	61.4	60.8	1		

 TABLE 1.
 ¹³C-nmr Spectra^a of Compound 1 and Its Enzymatic Hydrolysis Product.

^aChemical shifts were expressed in ppm from TMS. Solvent DMSO- d_6 ; 1 (75.45 MHz), enzymatic hydrolysis product (100.6 MHz). Assigned on the basis of ¹H-¹H COSY and ¹H-¹³C HETCOR spectra. IDENTIFICATION OF KNOWN FLAVONOIDS. —Icariin: yellow needles; mp 245–247°; Mg-HCl test positive; Molish test positive. Icariin was identified by uv, eims, ¹H nmr, and direct comparison with an authentic specimen (ir and tlc). Epimedoside A: yellow amorphous powder; mp 219–221°; Mg-HCl test positive; Molish test positive. Epimedoside A was identified by uv, fdms, eims, ¹H nmr, and ¹³C nmr. Kaempferitrin: yellow needles; mp 196–196.5°; Mg-HCl test positive; Molish test positive. Kaempferirin was identified by uv, fdms, eims, ¹H nmr, and ¹³C nmr.

ACID HYDROLYSIS OF 1.—A 10% HCl solution (5 ml) of 1 (25 mg) was heated under reflux for 10 h. The solution was neutralized with Ag_2CO_3 , and the filtrate was subjected to Si gel tlc [developing solvent CHCl₃-MeOH-H₂O (13:7:2) lower phase], to result in identification of glucose and rhamnose by the usual procedures.

To determine the molar ratio of the sugars and the aglycone of 1, a 10% HCl solution of 1 was heated under reflux for 10 h. The solution was evaporated in vacuum, and the residue was prepared for quantitative determination by tlc densitometry (5). For partial acid hydrolysis of 1 a 15% HOAc solution (10 ml) of 1 (100 mg) was heated under reflux for 10 h. The precipitate was purified by a Sephadex LH-20 column and recrystallized to produce the partial hydrolysis product.

ENZYMATIC HYDROLYSIS OF 1.—A 0.2 M NaOAc/HOAc buffer solution (pH 5) (50 ml) that contained 1 (300 mg) and cellulase (300 mg) was incubated at room temperature for 48 h. The precipitate was chromatographed on a polyamide column and purified with Sephadex LH-20, giving a yellow powder of the enzymatic hydrolysis product.

ACUMINATOSIDE [1].—A yellow amorphous powder: uv λ max (MeOH) nm 266, 311, 338 sh, (+NaOMe) 268, 294 sh, 350, (+AlCl₃) 276, 303, 340, 405, (+ AlCl₃/HCl) 274, 301, 336, 404, (+ NaOAc) 268, 312, 336 sh, (+ NaOAc/ H_3BO_3) 266, 312, 336 sh; fdms m/z $[M + Na + 2H]^+$ 1009, [M - glu + Na + 2H]847, $[M - 2 glu + Na + 2H]^+$ 685, [aglycone +glu + H]⁺ 531, $[aglycone]^+$ 368; eims m/z 368 (100), 353 (32.5), 339 (2.2), 325 (2.0), 313 (74.2), 300 (5.6), 284 (2.0), 184 (7.2), 165 (7.3), 157 (17.0), 135 (10.7), 128 (6.9), 107 (5.3); ¹H nmr (300 MHz, DMSO- d_6) δ 0.79 (3H, d, J = 6.0 Hz, rha-Me'), 1.08 (3H, d,)J = 6.0 Hz, rha-Me), 1.58, 1.66 (6H, s x2, Me-14, -15), 3.34 (2H, m, H-11), 3.83 (3H, s, 4'-OMe), 4.10 (1H, br, rha-H-2), 4.28 (1H, d, J = 8.0, glu-H-1'), 4.86 (1H, br, s, rha-H-1'), 5.00 (1H, d, J = 8.0 Hz, glu-H-1), 5.14 (1H, br, t, J = 5.0 Hz, H-12), 5.37 (1H, br, s, rha-H-1), 6.61 (1H, s, H-6), 7.11 (2H, d, J = 7.5 Hz, H-3'; 5'), 7.87 (2H, d, J = 7.5 Hz, H-2'; 6'), 12.60 (1H, s, 5-OH); ¹³C nmr see Table 1.

PARTIAL ACID HYDROLYSIS PRODUCT OF 1.—A yellow powder; uv λ max (MeOH) nm 266, 320, 369, 420 sh, (+ NaOMe) 261, 419, (+ AlCl₃) 264, 296 sh, 354, 432, (+ AlCl₃/HCl) 262, 294 sh, 351, 430, (+ NaOAc) 266, 321, 372, (+ NaOAc/H₃BO₃) 267, 321, 369; fabms m/z [aglycone + glu + 1]⁺ 531, [aglycone + 1]⁺ 369.

ENZYMATIC HYDROLYSIS PRODUCT OF 1.-A vellow powder: uv λ max (MeOH) nm 266, 284 sh, 334 sh, (+ NaOMe) 278, 376, (+ AlCl₃) 275, 304, 342, 402 sh, (+ AlCl₃/HCl) 276, 300, 338, 400 sh, (+ NaOAc) 276, 352, (+ NaOAc/ H₃BO₃) 266, 284 sh, 332 sh; fabms m/z [aglycone + 2 rha + 1⁺ 661, $[aglycone + rha + 1]^+$ 515, [aglycone + 1]⁺ 369, ¹H nmr (400 MHz, DMSO- d_6) δ 0.83, (3H, d, J = 6.0 Hz, rha-Me'), 1.13 (3H, d, J = 6.0 Hz, rha-Me), 1.64, 1.69 (6H, s x2, Me-14, -15), 3.32, 3.44 (each 1H, br, d, J = 14.0 Hz, H-11), 3.71 (1H, br, s, rha-H-2'), 3.87 (3H, s, 4'-OMe), 4.14 (1H, br, s, rha-H-2), 4.91 (1H, br, s, rha-H-1'), 5.17 (1H, br, t, J = 5.0 Hz, H-12, 5.39 (1H, br, s, rha-H-1), 6.34 (1H, s, H-6), 7.13 (2H, d, J = 9.0 Hz, H-3', -5', 7.87 (2H, d, J = 9.0 Hz, H-2', -6'); ¹³C nmr see Table 1.

ACKNOWLEDGMENTS

The authors are grateful to The National Foundation of Natural Sciences, China, for supporting this project. We also thank Prof. Dr. Xiao-tian Liang, Institute of Materia Medica, Chinese Academy of Medical Sciences, for helpful advice.

LITERATURE CITED

- 1. B.H. Hu, L.D. Zhou, and Y.L. Liu, Acta Pharm. Sin., (in press).
- M. Mizuno, S. Hanioka, S. Suzuki, M. linuma, T. Tanaka, X. Liu, and Z. Min, *Phytochemistry*, 26, 861 (1987).
- J.B. Harborne and T.J. Mabry, "The Flavonoids: Advances in Research," Chapman and Hall, New York, 1982, pp. 19– 51.
- K.R. Markham, B. Ternal, R. Stanley, H. Geiger, and T.J. Mabry, *Tetrahedron*, 34, 1389 (1978).
- 5. P.P. Zhao, B.M. Li, and L.Y. He, Acta Pharm. Sin., 22, 70 (1987).

Received 15 February 1991